2025 砂型 3D 打印機(jī)選型指南:根據(jù)鑄件尺寸、材質(zhì)選對(duì)設(shè)備參數(shù)最先出現(xiàn)在三帝科技股份有限公司。
]]>The size of the casting is a central factor in determining the specification of a sand 3D printer, which needs to be selected with a balance between current needs and future developments:
Different casting materials (e.g. cast iron, cast aluminum, cast steel) have different requirements for sand strength, air permeability and gas generation, which need to be matched with the corresponding equipment parameters and material technology:
Through the above selection strategy based on casting size and material, combined with the comprehensive advantages of 3DPTEK sand 3D printers, enterprises can accurately match the parameters of the equipment to achieve a high degree of compatibility between equipment performance and production needs, and at the same time improve the quality of castings, reduce production costs and enhance market competitiveness.
2025 砂型 3D 打印機(jī)選型指南:根據(jù)鑄件尺寸、材質(zhì)選對(duì)設(shè)備參數(shù)最先出現(xiàn)在三帝科技股份有限公司。
]]>4 米級(jí)大型砂型鑄造 3D 打印機(jī):2025 年解鎖大型鑄件制造,縮短 80% 周期 + 降本方案最先出現(xiàn)在三帝科技股份有限公司。
]]>Traditional large-scale sand mold manufacturing (size over 2 meters) needs to go through "mold making - sand core disassembly - manual assembly", there are difficult to solve the pain points, but 4-meter sand 3D printing through the "integrated molding + digital process" to achieve a comprehensive breakthrough. process" to realize a comprehensive breakthrough:
| Type of pain point | Status of traditional crafts | 4-Meter Sand 3D Printing Solution |
| long lead time | 4-8 weeks to produce a 4-meter sand mold (2-4 weeks for molding alone) | 2-5 days to complete the entire sand mold printing, full cycle time reduction 80% |
| Structural limitations | Complex internal channels, topology optimization structure requires more than 10 groups of sand cores to be disassembled, which is prone to assembly errors. | Print complex structures in one piece, no need to disassemble, error ≤ 0.3mm |
| high cost | Large metal molds cost over $500,000 and require 10 people/day for manual assembly. | No mold costs, automated printing reduces 80% labor |
| High scrap rate | Sand core splicing gaps lead to casting defects, scrap rate 15%-20% | Seamless sand molding + simulation optimization to reduce scrap rate to below 5% |

3DPTEK-J4000 As a benchmark equipment in the industry, it is not a simple enlargement of a small printer, but an exclusive design for large-scale sand manufacturing with the following core parameters:


Traditional 4-meter sand molding equipment needs to be fixed large sand box, a single print needs to be filled with tens of tons of sand, the cost is extremely high. And 3DPTEK-J4000 A breakthrough was achieved with the "Sandless Flexible Area Molding Technology":
It takes 6 weeks to make a 4-meter engine block sand mold by traditional process, but 3DPTEK-J4000 takes only 3 days to finish printing, and the whole cycle from design to casting delivery is compressed from 3 months to 1 month. A heavy machinery company used it to make large gearbox shell sand mold, new products on the market 2 months ahead of schedule, to seize a share of 30% market segment.
No need to consider the constraints of "stripping" and "splicing" of conventional processes, making it possible to accomplish difficult designs:
Despite the high initial investment in the equipment, the cost advantage is significant when calculated over the full life cycle:
The 4-meter molding space not only prints large sand molds, but also allows for the nested mass production of small parts:
Global environmental regulations are tightening (e.g., China's "dual carbon" policy, EU carbon tariffs), and 4-meter sand 3D printing meets environmental needs through two major technologies:
The success of 4-meter sand 3D printing requires not only high-quality equipment, but also a complete ecological support. 3DPTEK provides "end-to-end" solutions to reduce the difficulty of enterprise transformation:
3DPTEK has started the research and development of 6-meter-class sand printer, which can realize the whole printing of "8-meter-long ship propellers" and "10-meter-diameter nuclear power equipment shells" in the future, and completely eliminate the defects of large casting splicing.
Integrated AI system for automated completion:
The future equipment can realize "sand + metal powder" composite printing, printing high-temperature-resistant metal coatings on key parts of the sand mold (e.g., the sprue), adapting toTitanium alloy, ultra-high strength steelRefractory alloy casting, expanding the application in the field of high-end equipment.
For heavy manufacturing enterprises, 4-meter-class large sand casting 3D printer is no longer a "technological novelty", but a "necessity to enhance competitiveness" - it breaks the traditional process of It breaks the size and cycle time limitations of traditional processes, and realizes the triple breakthrough of "large-scale + complexity + low cost".
The commercialization of 3DPTEK-J4000 and other equipment has provided a fast track from design to casting for automotive, aerospace, industrial machinery and other industries. In the future, with the research and development of 6-10 meter-class equipment and the integration of AI technology, large casting manufacturing will enter a new stage of "full digitalization, zero defects and greening", and the enterprises that take the lead in laying out this technology will have an absolute advantage in the market competition.
4 米級(jí)大型砂型鑄造 3D 打印機(jī):2025 年解鎖大型鑄件制造,縮短 80% 周期 + 降本方案最先出現(xiàn)在三帝科技股份有限公司。
]]>砂型 3D 打印技術(shù):2025 年重塑金屬鑄造行業(yè),縮短 80% 周期 + 降本方案解析最先出現(xiàn)在三帝科技股份有限公司。
]]>Sand 3D printing is based onPrinciples of Additive ManufacturingThis is an industrial technology that directly transforms digital CAD models into solid sand molds / cores. Instead of the traditional "mold-making - sand-turning" process, the sand mold is formed by laying sand layer by layer on the printer and curing it by spraying a binder. The core process isBinder jetting technologyThe J1600Pro, J2500, and J4000 models from 3DPTEK, for example, offer significant advantages over conventional molding:
| comparison dimension | Sand 3D Printing | Traditional mold making process |
| production cycle | 24-48 hours | 2-4 weeks |
| Complex structure realization | Easy printing of internal channels, thin-walled parts | Difficult to realize, need to split multiple sand cores |
| Tooling Costs | No need for physical molds, cost is 0 | Customized wood / metal molding required, high cost |
| Material utilization | 90% or more (uncured sand can be recycled) | 60%-70% (much cutting waste) |
| Design Flexibility | Supports real-time modification of CAD models for fast iteration | Modification of the design requires re-modeling and long lead time |
While traditional processes take 2-4 weeks to produce complex sand molds (e.g. pump bodies, turbine casings), sand 3D printing takes only 1-2 days. Especially suitable forPrototype molding, small batch customization, emergency spare parts productionScenario -- A foundry uses the 3DPTEK J1600Pro to print sand molds of pump bodies from design to delivery in just 36 hours, a reduction of 80% compared to the traditional process, helping to bring products to market 2 weeks earlier.
Sand 3D printing eliminates the need for "mold release" issues, making it easy to create designs that would be impossible with traditional processes:
Despite the high initial investment in sand 3D printers, the cost advantage is significant when calculated over the full life cycle:
As global environmental regulations tighten (e.g., the EU REACH standard), sand 3D printing meets the need for environmental protection through two main technologies:
Sand 3D printing (binder jetting technology) is a simple, highly automated process that requires no complex human intervention, with the following core steps:
3DPTEK, as an industry leader, has introduced several models of sand printers covering small to very large casting needs with the following core parameters:
| models | Print size (L × W × H) | layer thickness | Applicable Scenarios | Suitable for casting alloys |
| 3DPTEK-J1600Pro | 1600×1000×600mm | 0.26-0.30mm | Small and medium-sized sand molds (e.g., motor housings, small pump bodies) | Aluminum, cast iron |
| 3DPTEK-J2500 | 2500×1500×800mm | 0.26-0.30mm | Medium to large sand molds (e.g. gearbox housings, turbine housings) | Steel, copper alloys |
| 3DPTEK-J4000 | 4000×2000×1000mm | 0.28-0.32mm | Oversized sand molds (e.g. ship propellers, large valves) | Stainless steel, specialty alloys |
Core AdvantagesAll models support "sand + binder" custom formulations, and 3DPTEK has over 30 proprietary formulations to match the needs of different alloys (e.g., aluminum alloy casting for low-viscosity binder, steel casting for high-temperature-resistant sand).
From 1.6-meter compact machines (J1600Pro) to 4-meter ultra-large machines (J4000) forSmall batch trial production to large scale mass productionThe J1600Pro is available for small and medium-sized foundries with a capacity of 5-8 sand molds per day, and the J4000 is available for large foundries with a capacity of 2-3 oversized sand molds per day.
3DPTEK has more than 30granule – Exclusive formulation for bonding agents, optimized for different alloys:
Provide "equipment + software + service" full-process support:
The equipment has been landed in more than 20 countries in Europe, Asia, the Middle East, etc., and the after-sales response speed is fast:
The future of sand 3D printing will be integratedAI Design Optimization System-- Input casting parameters (material, size, performance requirements), AI can automatically generate the optimal sand structure, while real-time monitoring of the printing process, by adjusting the amount of binder injection, sand laying thickness, to avoid cracks, uneven density and other problems in the sand, to achieve "zero defects " production.
exploit (a resource)Automatic Sand Recovery SystemIn addition, the uncured sand and old sand will be screened, decontaminated and recycled, and the material utilization rate will be increased from the current 90% to more than 98%, which further reduces the material cost and meets the requirements of the "Double Carbon" policy.
The future of sand 3D printers will enable "sand + metal powder" composite printing - printing metal coatings on critical parts of the sand model (e.g., gates) to improve the sand model's high-temperature resistance, and to accommodateUltra-high strength steel, titanium alloyRefractory alloys such as casting, expanding the application in the field of aerospace, high-end equipment.
In the increasingly competitive metal casting industry, "fast response, complex structure, green cost reduction" has become the core competitiveness - sand 3D printing by shortening the cycle time of 80%, realizing difficult designs, long-term cost reduction 40% and help foundries break through traditional process constraints.
3DPTEK, as a leading company in the field of sand 3D printing, provides customized solutions for foundries of different sizes through multiple models of equipment, exclusive material formulations, and integrated technical support. Whether in the automotive, aerospace, industrial machinery or energy sectors, choosing sand 3D printing means choosing the double advantage of "cost reduction and efficiency + technological leadership", which is also the core way for foundries to survive in 2025 and beyond.
砂型 3D 打印技術(shù):2025 年重塑金屬鑄造行業(yè),縮短 80% 周期 + 降本方案解析最先出現(xiàn)在三帝科技股份有限公司。
]]>工業(yè)級(jí) SLS 3D 打印機(jī):復(fù)雜零件精密制造的革新方案,2025 年技術(shù)解析與行業(yè)應(yīng)用最先出現(xiàn)在三帝科技股份有限公司。
]]>Industrial-grade SLS 3D printers use a high-powered laser toNylon, composite polymers, specialty casting sands/waxesThe industrial-grade equipment for selective fusion of powder materials and other materials to build up solid 3D parts layer by layer. Its core technical characteristics are significantly different from desktop-level SLS equipment:
| comparison dimension | Industrial Grade SLS 3D Printer | Desktop SLS Devices |
|---|---|---|
| Molding space | Large (some models up to 1000mm) | few |
| production efficiency | High, supports mass production | Low, mostly single-piece printing |
| Quality of parts | Stable and meets mass production standards | Lower precision, suitable for prototyping |
| Material compatibility | Hiro (engineering plastics, casting sand, wax) | Narrow (mostly basic nylon powder) |
In addition, industrial-grade SLS printing requires no support structure (unsintered powder naturally supports the part), making it easy to accomplish things that are impossible with traditional processes.Complex internal channels, lightweight lattice structures, active componentsAll-in-one molding.
In the aerospace, automotive, medical, foundry and other fields, industrial-grade SLS technology has become the key to improve productivity and innovation, the core advantages are reflected in the following four points:
No support structure is required, allowing engineers to designComplex internal cavities, integrated moving parts, topology-optimized lightweight structure-- such as hollow structural parts in aerospace and complex runner components in automotive engines -- are difficult to achieve with traditional processes such as CNC machining and injection molding.
SLS printed parts are not "prototypes" but finished parts with useful functionality. Commonly usedPA12 (nylon 12), PA11 (nylon 11), glass fiber reinforced nylonThese materials have mechanical properties close to those of injection-molded parts, as well as excellent chemical resistance and impact resistance, and can be used directly in mass-production scenarios such as automotive interior parts and medical and surgical tools.
From CAD model to finished part, industrial-grade SLS prints in3-7 daysThis is much faster than traditional mold making, which typically takes weeks. For R&D teams in prototype validation, small batch customized production, and emergency spare parts replenishment, this advantage can dramatically shorten the time-to-market cycle and seize the market opportunity.
Industrial-grade SLS equipment can nest dozens or even hundreds of parts in a single print run, making it ideal forSmall batch mass productionSLS can also be used as a "bridge manufacturing" tool - using SLS to quickly produce transitional parts before committing to expensive injection molds, avoiding risky tooling investments and reducing upfront production costs.
Nylon is the first material that comes to mind when you think of SLS materials, but industrial-grade equipment has achieved multi-material compatibility and specialized materials, especially in the foundry sector, are driving the digital transformation of traditional casting processes:
by combiningQuartz Sand / Ceramic SandMixed with a special binder for laser sintering, industrial-grade SLS printers can directly print sand molds and cores for metal casting, with core benefits including:
As a leading brand in the industry, 3DPTEK offers specialized models for foundry scenarios, adapted to the needs of industrial-grade production:
The industrial-grade SLS print process is highly automated, with a 5-step core process that eliminates the need for complex manual intervention:
With the advantages of high precision, high compatibility and fast production, industrial-grade SLS technology has landed in many key industries, and the typical application scenarios are as follows:
A European automotive supplier needed to customize tooling for a short-term production task. The traditional solution used CNC machining, which required a 10-day lead time and high equipment costs; it switched to CNC machining.3DPTEK Industrial Grade SLS 3D PrinterAfter:
Among the many brands of industrial SLS equipment, 3DPTEK has become a popular choice for manufacturing companies due to its "mass-production oriented" design philosophy, which is reflected in its core competence in four ways:
With the advancement of material science and automation technology, industrial SLS printing will develop to higher efficiency, wider application and higher quality, and the 3 major trends in the future are obvious:
Industrial-grade SLS 3D printers are no longer just "prototyping machines", they are "design-production-application" machines that are capable of linking the entire design-production-application process.Production-grade solutionsIndustrial SLS technology provides efficient, cost-effective solutions to the lightweight needs of the aerospace and automotive industries. Whether it's the lightweight needs of aerospace, the rapid response needs of the automotive industry, the personalization needs of the medical field, or the digitalization needs of the foundry industry, industrial-grade SLS technology provides an efficient, cost-effective solution.
For manufacturing companies, choosing the right industrial-grade SLS equipment (such as 3DPTEK's sand/wax mold models) not only improves productivity, but also breaks through the limitations of traditional processes and seizes the high ground for innovation - which is the core value of industrial-grade SLS 3D printing in the future of manufacturing.
工業(yè)級(jí) SLS 3D 打印機(jī):復(fù)雜零件精密制造的革新方案,2025 年技術(shù)解析與行業(yè)應(yīng)用最先出現(xiàn)在三帝科技股份有限公司。
]]>第23屆中國(guó)鑄博會(huì)開展首日,三和精密、固德模具與三帝科技達(dá)成戰(zhàn)略合作最先出現(xiàn)在三帝科技股份有限公司。
]]>
Figure: Sanhe Precision and SanDi Technology sign strategic cooperation agreement

Figure: Goodyear Mould and SANDI Technology signed a strategic cooperation agreement
Cangzhou Bohai Sanhe Precision Manufacturing Co., Ltd. is a high-end casting head enterprise formed by a joint venture of several enterprises, including Japan Concord Foundry and Tianjin Binrui Trading, focusing on the research, development and production of precision castings for intelligent valve bodies, aviation hydraulic systems, gearboxes and other precision castings. In this cooperation, Sanhe Precision will introduce 3DP sand printing equipment of SANDI Technology to optimize the product development process and improve the production efficiency of complex castings, further consolidate its leading position in the global precision casting market and accelerate the upgrade to intelligent manufacturing.
Goody Mould (Shenyang) Co., Ltd. is a leading precision mold manufacturer in China, focusing on the design and production of molds for complex curved structural components such as industrial machinery, marine pumps and valves. Goody Mould will introduce SANDI's 3DP sand printing equipment for rapid verification of metal molds before development, which will significantly shorten the product development cycle, reduce the cost of the molds, and further enhance its competitiveness in the high-end mold market.


As a leading provider of 3D printing equipment and additive manufacturing services in China, SANDI Technology is committed to providing users in the foundry industry with all-round support from process optimization to production verification through its self-developed 3DP sand printing and SLS sand/wax equipment. In order to meet diversified market demands, based on 30 years of accumulation of powder laying technology, SANDI Technology has formed a complete product line of sand printing equipment, including 1.6m, 1.8m, 2.5m, 4m and other size series, covering the full size of 3DP casting sand printing from millimeter to meter level, which can meet the manufacturing needs of products of different sizes and materials, and, with lower unit cost and shorter delivery time, can help users maximize productivity.
Figure: 3DP casting sand printing equipment independently developed by SANDY Technology3DPTEK-J1600Pro/J1600Plus/J1800/J2500/J4000

From May 20-23, SANDI Technology is showcasing oversized casting sand printing and a full range of 3D casting solutions on-site during the China International Casting Expo, welcome to visit SANDI's booth (Hall S8-A06, Tianjin National Convention and Exhibition Center) to exchange ideas!

第23屆中國(guó)鑄博會(huì)開展首日,三和精密、固德模具與三帝科技達(dá)成戰(zhàn)略合作最先出現(xiàn)在三帝科技股份有限公司。
]]>三帝科技大尺寸3D鑄造解決方案將登陸中國(guó)國(guó)際鑄造展最先出現(xiàn)在三帝科技股份有限公司。
]]>
SANDY TECHNOLOGY Booth: Hall S8, Booth A06
The 23rd China International Foundry Expo will be held on May 20, 2025 at the Tianjin National Convention and Exhibition Center (No. 888, Guozhan Avenue, Xianshuigu Town, Jinnan District, Tianjin), and Beijing SANDY Technology Co.

High-precision, large-size 3DP sand printer3DPTEK-J2500

3DPTEK-J2500 is an industrial-grade 3D casting sand printer launched by SANDI Technology, with a large-size molding capability of 2500×1500×1000mm and a high-precision printing capability of ±0.3mm, which is suitable for the manufacture of large castings in the fields of aviation and aerospace, electric power and energy, ships, pumps and valves, and automobiles. The equipment adopts piezoelectric inkjet printing technology, high-resolution inkjet system and special binder formula, which can realize integrated molding of complex structures and avoid the loss of precision of traditional splicing process. Through digital moldless molding technology, it effectively reduces mold development costs and waste emissions, improves casting efficiency and quality, and helps enterprises achieve cost reduction and efficiency and sustainable development. The equipment adopts high-end core components to ensure long-term stable operation.
Sandless Box Large Size 3DP Sand Printer 3DPTEK-J4000


The sandbox-free large-size 3DP sand mold printer 3DPTEK-J4000 launched by SANDI Technology provides an efficient, high-quality and low-cost solution for the manufacturing of ultra-large castings with its disruptive technology. The device adopts sandbox-free flexible area molding technology, breaking through the traditional process of design space limitations, support for local printing, the maximum molding of 4 meters of sand molding, large size, thin-walled, multi-dimensional curved surfaces and complex cavities (such as the spiral cooling waterway) casting integrated molding, and the selling price is very cost-effective. At the same time to provide open-source material process, can be adjusted for the user on demand, supporting high-performance resin binder, curing agent, cleaning agent, to ensure the quality and stability of molding, and further reduce the overall cost.
In order to meet the diversified market demands, SANDI has self-developed 3DP casting sand and SLS casting sand/wax series printers in full sizes from millimeter to meter, which help users maximize productivity with lower unit cost and shorter delivery time.

Figure: 3DP Casting Sand Printer

Figure: SLS Casting Sand/Wax Printer
3D Castingservice

Based on 30 years of 3D printing service and casting experience, SANDI Technology has established full-size, multi-material, and full-chain rapid manufacturing service capabilities through 3D casting factories and printing service centers in Xianyang, Shaanxi, Daiming, Hebei, Pingdingshan, Henan, Yulin, Guangxi, Rizhao, Shandong, Linzhou, Henan, and Tongling, Anhui, etc., and can provide rapid R&D trial production and batch production of finished metal parts made of aluminum alloy, copper alloy, cast iron, cast steel, magnesium alloy, high temperature alloy, and titanium alloy, as well as casting sand and wax 3-D casting service. It can provide users in the fields of aerospace, electric power, ship pump valve, automobile, rail transportation, construction machinery, etc. with rapid research and development of finished metal parts made of aluminum alloy, copper alloy, cast iron, cast steel, magnesium alloy, high-temperature alloy, titanium alloy and other materials for trial production and batch production, as well as casting sand and wax 3D printing services.

Contact: 13811566237
Website:feicong.com.cn
Address: Building 2, No.7 House, Jin Yi Street, Shunyi District, Beijing, China
[About SANDI TECHNOLOGY
3D Printing Technology, Inc. is a 3D printing equipment and rapid manufacturing service provider, a national specialized, special and new "small giant" enterprise, and a typical application scenario supplier of additive manufacturing of the Ministry of Industry and Information Technology (MIIT). At the same time has laser and binder jet 3D printing equipment and materials technology and application process, three emperor technology business covers the development and production of 3D printing equipment, 3D printing raw materials development and production, 3D printing process technology support services, rapid finished parts manufacturing services, etc., to establish a complete 3D printing additive manufacturing industry chain, widely used in aerospace, electric power and energy, ships, pumps and valves, automobiles, rail transportation, industrial machinery, 3C additive manufacturing typical application scenarios, the Ministry of Industry and Information Technology, and the company is a leading supplier of additive manufacturing, Railway transportation, industrial machinery, 3C electronics, rehabilitation and medical treatment, education and research, sculpture and cultural creation and other fields.
三帝科技大尺寸3D鑄造解決方案將登陸中國(guó)國(guó)際鑄造展最先出現(xiàn)在三帝科技股份有限公司。
]]>3D打印砂型鑄造,傳統(tǒng)鑄造廠老板必看最先出現(xiàn)在三帝科技股份有限公司。
]]>--Customers want to do small quantities of trial parts, do a metal mold to 200,000, the result of the order is only 50 pieces, a calculation found that the mold cost more than the money earned, can only give up the order!
--The customer had an order for an aerospace part with honeycomb structure, and the traditional sand core assembly error was bigger than the part size, so it was a big headache to stare at the scrapped casting!
--Competitors with 3D printing took a well-known automotive battery pack orders, their own offer is lower than others 30% or did not win the bid, and finally inquired about the delivery of people faster than us 2 months, very helpless!
--Customers do not move to change the design of the warehouse piled up more than 300 sets of scrap molds, checking the accounts found that the mold inventory occupied half a year of profit, which is too painful to taste!
--Customers sent a complex structure of the pieces over, and said that the price is not a problem, an assessment found that the traditional casting process can not be done, looking at such a high value-added orders can only be given up!
Below we help all bosses one by one to sort out clearly, an article to let you fully understand the 3D printing sand casting technology!
Sand 3D printing is a relatively new technology, simply put, is like building blocks, with special materials layer by layer "pile" out of the casting sand.
In the past, the traditional method of making sand molds may need to make molds first, and then use the molds to shape, the process is more complicated, and if you want to make some sand molds with very strange and complex shapes, it will be particularly difficult and costly. But sand 3D printing is different, it works with a 3D model in your computer. You input the data of the 3D model of the designed casting into the 3D printer, and the printer will, according to the shape and structure of the model, put special sand or sand-like materials, according to the layer by layer in a precise way and bonded up, just like using countless thin "sand pieces" gradually built into a complete sand mold. In this way, no matter how complex the shape, as long as it can be designed in the computer, it can be printed out, and the speed is quite fast, and do not need to make complex molds like the traditional method, can save a lot of time and cost it.
Sand 3D printing is usually done usingBinder Jetting (BJ)The basic principle is as follows:
The existence or birth of each technology must have its "mission". Commonly known as a solution to a particular problem, to meet market demand, this is the value of its existence. Below we take a look at the sand 3D printing technology to solve the thorny problems encountered in the traditional casting, as follows:
The price of a sand 3D printer is not cheap (usually the larger the size the more expensive), to buy is relatively cautious, especially small and medium-sized foundries. In order to help bosses to assess whether there is a need to buy, we have specially organized the following some evaluation points, to give the boss of the traditional foundry a reference, and then according to their own situation to decide whether to buy:
Considering that many traditional foundry enterprises may not be equipped with 3D printing sand casting related professionals, we have specially organized the position of workers need to have what aspects of the skills and usual job duties, so that factories in the recruitment of reference.
Professional Requirements:
Job Description:
In summary, sand 3D printing technology has brought many opportunities and changes for traditional foundries, which can effectively solve a series of thorny problems faced by the traditional casting process, such as the manufacturing of complex shaped parts, long production cycle, difficult to control the cost, poor casting accuracy and environmental protection pressure. Through a comprehensive assessment of production demand, cost-effectiveness, technical capabilities, market competition and environmental requirements, foundry owners can be more scientific and rational judgment whether to introduce sand 3D printer. Equipped with professional technical personnel, is to ensure that this technology in the foundry in the smooth landing, play the key to maximize performance.
In the increasingly competitive foundry market, take the initiative to embrace new technologies, and actively make changes, may be able to seize the first opportunity to realize the transformation and upgrading of enterprises and sustainable development. For traditional foundries, sand 3D printing technology is not only a technology change, but also a breakthrough in the development of bottlenecks, enhance core competitiveness of the perfect opportunity. I hope that all foundry bosses can combine the actual situation of their own enterprises, fully weigh the pros and cons, to make the most suitable for the long-term development of the enterprise's decision-making, so that the enterprise in the tide of the times to ride the waves, sailing to a broader market blue sea.
3D打印砂型鑄造,傳統(tǒng)鑄造廠老板必看最先出現(xiàn)在三帝科技股份有限公司。
]]>砂型3D打印機(jī)解決了什么核心問(wèn)題?這篇文章告訴你真相最先出現(xiàn)在三帝科技股份有限公司。
]]>Conventional casting processes often face enormous technical difficulties and high costs when manufacturing sand molds of complex shapes. For example, aircraft engine blades usually have fine and complex cooling channels inside, the traditional process of manufacturing such molds is extremely difficult. The sand 3D printer through digital modeling and layer-by-layer printing technology, can easily achieve the manufacture of complex shapes of sand molds, greatly reducing the technical threshold and cost.
With the rise of personalized consumption and niche markets, the demand for small-lot, customized castings is growing explosively. However, the traditional casting process, with its high mold opening costs and long customization cycle, is difficult to meet the market's rapid response needs. Sand 3D printers do not require molds and are able to quickly design and print sand molds according to customers' special specifications, shapes and performance requirements, greatly improving the flexibility and efficiency of customized production.




Traditional sand casting requires a lengthy process of designing the mold, manufacturing the mold, commissioning the mold, etc. The manufacturing cycle for large molds often exceeds several months. During the period may also be due to design changes or mold defects lead to rework, further extending the production cycle. Sand 3D printers do not need to make molds, directly according to the digital model printing, can significantly shorten the product development cycle, improve production efficiency.
In the traditional casting mold manufacturing process, the material waste is serious, and the material utilization rate of complex molds is less than 30%. In addition, from the molders to the molding workers, mold repair workers, the manpower investment is large, which further pushes up the cost. Sand 3D printer on-demand printing, accurate sand, material utilization rate of more than 90%. high degree of automation in the printing process, reducing the cost of manpower, significantly reducing production costs.
Traditional sand mold due to mold wear, parting surface fitting errors and other issues, casting size deviation often exceeds ± 1mm, subsequent machining allowance, material waste. Sand 3D printer by the digital model precision drive, sand size accuracy up to ± 0.5mm or less, reducing the machining process, reducing costs.
Traditional sand molds are prone to localized looseness, sand entrapment and other problems, resulting in uneven mechanical properties of castings, prone to cracks and other defects. Sand 3D printer can achieve uniform compactness, to avoid uneven sand loose, and at the same time, optimize the solidification process, significantly reduce shrinkage holes, shrinkage, to ensure stable and reliable internal quality of the casting, to enhance the performance and service life of the product.
Traditional casting mold manufacturing produces a large amount of waste metal, waste plastic, sand processing waste sand piles up. The annual capacity of 10,000 tons of castings of the factory, the annual emissions of waste sand more than 5,000 tons, high treatment costs and pollution of the environment. Sand 3D printer in the production, unused sand can be recycled and reuse, very little waste. In addition, the printing process does not require a large number of chemical binders, reducing the volatilization of harmful gases and improving the workshop environment.
Sand 3D printer can quickly respond to market demand, especially suitable for frequent re-modeling of small batch products. It allows foundries to quickly meet customers' individual customization needs and improve customer satisfaction and market competitiveness. At the same time, the sand 3D printer supports mass production, which can print a large number of high-quality sand molds in a short period of time to meet the needs of large-scale production and improve production efficiency and yield.
Sand 3D printing technology directly prints sand molds without opening molds, thus greatly reducing the cost of opening molds, especially suitable for small batch and complex structure production needs. In addition, sand 3D printing equipment can be operated with only simple training, and does not require a lot of manpower synergy, which can effectively reduce the dependence on skilled workers, so that foundries can easily cope with the recruitment difficulties and expensive labor problems.
Sand 3D printers are more accurate, such as the3DPTEKof 3D printing equipment, which means that the dimensional accuracy of castings is dramatically improved, the one-time pass rate of products is significantly increased, the scrap rate is reduced, and the foundry is allowed to utilize its resources more efficiently. At the same time, the 3D printed sand mold has better precision and surface quality, reduces the amount of grinding and finishing work, makes the production process cleaner, and improves product quality and process consistency.
With a compact body design, the sand 3D printer occupies a small area and is flexible to install, which is suitable for the different site layout requirements of small and medium-sized foundries. Modular production solutions can also support easy expansion of enterprises to achieve multi-machine linkage. Part of the sand 3D printer support digital monitoring system, business managers can monitor the production progress and equipment status in real time, to achieve a fully controllable production process, equipment operation data can be automatically stored to facilitate the optimization of production strategies.




The emergence of sand 3D printers not only solves many problems in the traditional casting process, but also brings unprecedented opportunities for the foundry industry. It provides foundries with strong competitiveness by improving production efficiency, reducing production costs, improving product quality and optimizing production management. With the continuous progress of technology, sand 3D printers will play an increasingly important role in the future of the manufacturing industry, promoting the foundry industry to a more efficient, more environmentally friendly and smarter direction.
砂型3D打印機(jī)解決了什么核心問(wèn)題?這篇文章告訴你真相最先出現(xiàn)在三帝科技股份有限公司。
]]>探索無(wú)砂箱3D打印機(jī)最先出現(xiàn)在三帝科技股份有限公司。
]]>The boxless 3D printer is so named because it eliminates the use of a traditional box in the sand 3D printing process, significantly differentiating it from conventional sand 3D printers. Here's more about it from a variety of perspectives:
The role and limitations of traditional sandboxesSandboxes are an indispensable part of the traditional sand casting process and some traditional sand 3D printing techniques. It is used to hold the sand, provide molding space for the sand model, ensure that the sand maintains a specific shape during the molding process, and ensure the integrity of the sand model during transportation and box closing. However, the fixed size of the sand box limits the size of the sand mold that can be produced, and the production and maintenance costs are high. For the complex structure of the sand mold, the sand box is difficult to design and manufacture, and it may also affect the heat dissipation and air permeability of the sand mold, which may affect the quality of the castings.
How sandless box 3D printers work: The sandbox-less 3D printer adopts sandbox-less flexible area molding technology, in which abrasive and binder are stacked and molded layer by layer by the nozzle directly on the worktable. The equipment has a precise sand spreading system, which can evenly spread the sand material in the printing area, and the nozzle accurately sprays the binder according to the model cross-section information, so that the sand particles are bonded to form the sand shape layer by layer. In this process, there is no need for a sand box to provide molding space and constraints, which greatly improves printing flexibility and freedom.
Basis of namingThe naming of the 3D printer directly reflects its core technical feature, which is that it is free from the constraints of the traditional sand box, creating a new mode of sand 3D printing. This naming scheme is simple and clear, highlighting the essential difference with the traditional sand 3D printing equipment, and emphasizing its unique advantage of realizing high-precision and high-efficiency manufacturing of sand patterns without the assistance of a sand box during the printing process.
There is a clear difference between the working principle of a boxless 3D printer and that of a traditional sand 3D printer. Traditional sand 3D printers rely on a fixed sand box to define the molding space, and rely on the sand box to provide partial support, and the print path is limited by the sand box; while sand box 3D printers use flexible area molding technology, expanding the printing platform on demand, breaking through the size limitations, and supplying the sand and binder with greater precision, and adjusting the internal sand buildup and binder injection to provide support, so the print path is more freely and flexibly planned, and it can effectively improve the printing efficiency and sand quality. It can effectively improve the printing efficiency and the quality of the sand mold.
The development of sandbox-free 3D printers in the foundry field is very promising, mainly in the following aspects:
Technological innovation and breakthroughs
Sandbox-free 3D printers continue to realize technological innovations, such as SANDI's 3DPTEK-J4000 Adoption of sandbox-less flexible area molding technology, can be customized to expand the printing platform, the maximum molding 4 meters of sand, to meet the production needs of 10 meters + level, breaking through the traditional casting equipment size limitations, for the manufacture of large and complex castings to provide the possibility of.
Significant cost advantages
On the one hand, the cost of ownership is reduced, as the price of 4-meter and larger boxless 3D printers is comparable to that of 2.5-meter machines, allowing companies to obtain larger sizes of abrasive molds at a lower cost per unit. On the other hand, material waste is reduced, as boxless 3D printers allow precise use of materials such as sand and binder, reducing production costs.
Strong growth in market demand
Aerospace, automotive, energy power and other fields of large, complex, high-precision castings demand continues to rise. For example, the manufacture of aircraft engine components, automotive engine block, etc., sandless 3D printers can meet the high-performance requirements for castings in these fields, the market potential is huge.
Significant increase in design freedom
The sandless box 3D printer can manufacture complex geometric shapes and cavities that are difficult to achieve by traditional methods, realizing parts integration and lightweight design, providing more space for product innovation and helping to improve product performance, reduce costs and enhance the market competitiveness of enterprises.
Significant increase in productivity
Compared to traditional mold making methods, sandbox-less 3D printing of sand molds or cores takes only a few hours to a few days, dramatically shortening the development and production cycle of new products, helping manufacturers respond faster to changes in market demand, and improving productivity and economic efficiency.
Superior environmental performance
Sandless 3D printers use materials on demand, reducing waste and disposal costs of leftover materials, and some of the equipment can use environmentally friendly materials and binders, which reduces environmental pollution, meets the requirements of sustainable development, and helps foundry companies to meet the increasingly stringent restrictions of environmental regulations.
Deepening Industrial Integration
The integration of sand box 3D printer and foundry is deepening, enterprises through mergers and acquisitions of foundries and other ways to open up the "3D printing + casting" process, to provide the whole industry chain overall solution, and promote the foundry industry to the green, intelligent, high-end direction of development.
探索無(wú)砂箱3D打印機(jī)最先出現(xiàn)在三帝科技股份有限公司。
]]>為什么要購(gòu)買砂模3D打印機(jī)最先出現(xiàn)在三帝科技股份有限公司。
]]>
Sand mold 3D printers are able to create sand molds with extreme precision, which is essential for producing high-quality castings. While traditional methods of sand mold making are often overwhelmed by the complexity of the structures, 3D printing makes it easy. It is able to accurately reproduce every detail of a design drawing, whether it is a complex internal cavity, a fine texture or a thin-walled structure. This high-precision manufacturing capability not only improves the dimensional accuracy and surface quality of the castings, but also reduces subsequent machining processes and production costs. For example, in the aerospace field, some key components require extremely high precision, and sand mold 3D printers can produce sand molds that meet strict standards, thus ensuring the quality and performance of the final casting, and meeting the demanding requirements of aerospace products for safety and reliability.
The traditional sand mold production process is usually more cumbersome, need to go through the mold design, production, assembly and other aspects, consuming a lot of time. Sand mold 3D printer greatly simplifies this process, it can be directly based on the digital model of the sand mold layer by layer printing, without the need to make molds and complex assembly operations. This shortens the production cycle significantly, enabling companies to bring products to market faster and seize the first opportunity. Taking automobile manufacturing as an example, the development cycle of new models is often very tight, sand mold 3D printer can make sand molds for automobile engines and other parts in a short period of time, accelerating the trial production process, helping enterprises to verify and optimize their products faster, and improving the overall research and development and production efficiency.
The purchase of a sand mold 3D printer requires a certain initial investment, but in the long run, it can bring significant cost reductions for enterprises. On the one hand, as mentioned earlier, it reduces the mold making and assembly in the traditional sand mold making process, reducing labor costs and mold costs. On the other hand, as 3D printing can realize high-precision manufacturing, it reduces the scrap rate and subsequent processing costs. In addition, 3D printing technology can also optimize the design of the sand mold, so that it meets the requirements of the premise of more lightweight, thus reducing the use of casting materials, further reducing costs. For some small batch but a variety of products for the enterprise, sand mold 3D printer cost advantage is more obvious, because it does not need to make a special mold for each product, greatly reducing the production cost and inventory pressure.
Sand mold 3D printers offer designers a high degree of design freedom. Traditional manufacturing processes are often limited by the structure of the mold and the manufacturing method, and designers need to consider many process factors when designing a product, thus compromising the design. 3D printing technology, on the other hand, breaks down these limitations and allows designers to give full play to their imagination and design more innovative and unique product structures. For example, they can design castings with complex internal runners to optimize product performance, such as improving heat dissipation efficiency or fluid flow performance. This increased design freedom not only helps companies develop more competitive products, but also promotes innovation in the industry as a whole.
With the diversification of market demand and the trend of individualization becoming more and more obvious, personalized customization has become an important development direction of the manufacturing industry. Sand mold 3D printer can precisely meet this demand, it can according to the customer's specific requirements, quickly create a unique sand mold, to achieve personalized custom production. Whether it is a single piece of customization or small batch customization, sand mold 3D printer can easily deal with. This is important for some high-end equipment manufacturing, medical equipment and other fields.




In today's era of environmental protection and sustainable development, sand mold 3D printers also have certain advantages. The traditional sand mold production process will produce a large number of waste and pollutants, such as waste mold materials, chemical reagents, etc., causing greater pressure on the environment. The sand mold 3D printer in the manufacturing process is relatively more environmentally friendly, it is mainly used in sand and other environmentally friendly materials, and can be optimized through the design and printing parameters to reduce the waste of materials. In addition, because 3D printing technology can achieve precision manufacturing, reducing the production of scrap, further reducing the impact on the environment. Therefore, the purchase of sand mold 3D printers is in line with the company's environmental philosophy and social responsibility, and helps the company achieve sustainable development.
To sum up, purchasing sand mold 3D printer has many advantages, including high precision and complex structure manufacturing ability, shorten the production cycle, reduce costs, high design freedom, personalized customization and environmental sustainability. For modern manufacturing enterprises, sand mold 3D printer is not only a kind of advanced production equipment, but also an important tool to enhance the competitiveness of enterprises and realize innovative development and sustainable development. With the continuous progress of technology and the continuous expansion of the application, I believe that the sand mold 3D printer will play an important role in more areas, for the development of the manufacturing industry to bring new opportunities and changes. Therefore, when considering the production upgrade and development strategy of enterprises, the purchase of sand mold 3D printer is a choice worth serious consideration.
為什么要購(gòu)買砂模3D打印機(jī)最先出現(xiàn)在三帝科技股份有限公司。
]]>